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Plan of the talk

i Introduction

@ Motivation, physical processes active in clusters, numerical techniques
i Modeling star clusters using the Hénon-type Monte Carlo
Code CMC
@ Validation of CMC

& BHs in clusters: the evolving story & current understanding

i@ BHs are affected by cluster dynamics

@ Properties, difference from field (undisturbed) population, aLIGO

implications
i@ Cluster is affected by its BHs
i@ Effects of uncertain BH-related physics

& Summary and conclusion



Star clusters Properties

Star clusters in galaxies




Why study dense star clusters!?




Why study dense star clusters!?







i@ Massive GCs are important targets in distant galaxies

@ The dynamical history of clusters provides important clues to the

hierarchical formation of the Galaxy (e.g., Brodie & Strader 2006 for a review)

i@ Spatial distribution can constrain the dark matter halo radius

2 Typical old ages provide a direct window to early major star formation
episodes in the local universe (e.g., Brodie & Strader 2006)

@ All stars are born in clusters of some size

a2 All clusters lose stars from galactic tides

d |ow mass clusters dissolve completely within Hubble time (e.g., Giersz & Heggie
1997; Odenkirchen et al. 2003; Gieles et al. 2005; Lamers et al. 2005)



Physical Processes

i@ Two-body relaxation

B Cumulative effect of a sequence of weak pair-wise gravitational

interactions is a slow outward diffusion of energy

i@ Mass segregation is a natural consequence as the system evolves towards

equipartition of energy

@ Typical timescale for Galactic GCs ~ 107 yr

i Binary-burning
@ Energy production from strong super-elastic scattering involving hard

binaries

@ Interactions happen on a dynamical timescale

k& Stellar evolution

@ Massive stars evolve on much shorter timescales compared to GC ages

@ Wind mass loss, mass loss from compact object formation

i® Galactic tidal stripping



Evolutionary stages of dense star clusters
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Monte Carlo Code CMC

Physical Processes & Parallelization

i [wo-body relaxation (oshi et al. 2000)

il Strong interactions: physical collisions, binary-mediated

Interactions (Fregeau & Rasio 2007)

GaIaCtiC tldal Str'lpplng (Joshi et al. 2001; Chatterjee et al. 2010)

i Stellar evolution using BSE (Hurley et al. 2000, 2002; Chatterjee et al. 2008, 2010)

i@ Central IMBH with loss-cone physics umbreit et al. 2012)

i Rate-based 3-BOC|)’ binary formation (Morscher et al. 2015)
2 Parallelized USing MPI & CUDA (Pattabiraman et al. 2012)
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Lagrange radii (pc)
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number of BHs
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’ Evolvmg Story: of Stezj'ar-
Mass BHs in Old Star Clusters



BHSs in Star Clusters

Massive GC-like clusters are born with N~105 — 106 stars, leading to hundreds
to thousands of BH progenitors.

What happens to these BHs is still an evolving story.

« Past understanding: Mass segregation followed by rapid dynamical gjections

deplete GCs of BHs on ~ Gyr timescales (e.g., Spitzer 1969: Kulkarni et al. 1993:
Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000; Kalogera et al. 2004)
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BHSs in Star Clusters

Massive GC-like clusters are born with N~105 — 106 stars, leading to hundreds
to thousands of BH progenitors.

What happens to these BHs is still an evolving story.

« Past understanding: Mass segregation followed by rapid dynamical gjections

deplete GCs of BHs on ~ Gyr timescales (e.g., Spitzer 1969: Kulkarni et al. 1993:
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Stellar-Mass Candidate BHs
are Observed in GCs

Vol 445|11 January 2007|doi:10.1038/nature05434 nature
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Stellar-Mass Candidate BHs

are Observed in GCs
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Stellar-Mass BHs Remain in Old GCs
and do interesting things

Massive GC-like clusters are born with N~105 — 10° stars, leading to hundreds
to thousands of BH progenitors.

What happens to these BHSs is still an evolving story.

e Past understanding: Mass segregation followed by rapid dynamical ejections

deplete GCs of BHs on ~ Gyr timescales (e.g., Spitzer 1969: Kulkarni et al. 1993:
Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000; Kalogera et al. 2004)

 BH candidates are beginning to be discovered in old GCs (c.g., Maccarone et
al. 2007; Irwin et al. 2010; Strader et al. 2012; Chomiuk et al. 2013)

 Modern simulations reveal why BH evaporation is not efficient



What Really Happenes to the BHs in Clusters!?
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What Really Happenes to the BHs in Clusters!?
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Really Happenes to the BHs in Clusters!?
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What Really Happenes to the BHs in Clusters!?
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What Really Happenes to the BHs in Clusters!?
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What Really Happenes to the BHs in Clusters!?
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What Really Happenes to the BHs in Clusters!?
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Stellar-Mass BHs Remain in Old GCs
and do interesting things

Massive GC-like clusters are born with N~105 — 10° stars, leading to hundreds
to thousands of BH progenitors.

What happens to these BHSs is still an evolving story.

e Past understanding: Mass segregation followed by rapid dynamical ejections

deplete GCs of BHs on ~ Gyr timescales (e.g., Spitzer 1969: Kulkarni et al. 1993:
Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000; Kalogera et al. 2004)

 BH candidates are beginning to be discovered in old GCs (c.g., Maccarone et
al. 2007; Irwin et al. 2010; Strader et al. 2012; Chomiuk et al. 2013)

 Modern simulations reveal why BH evaporation is not efficient

* A small fraction of most massive BHs get decoupled from the cluster; even

those do not stay decoupled for long. (e.g., Mackey et al. 2008; Moody &
Sigurdsson 2009; Aarseth 2012; Breen & Heggie 2013; Morscher et al. 2013, 2015)
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Stellar-Mass BHs Remain in Old GCs
and do interesting things
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Stellar-Mass BHs Remain in Old GCs
and do interesting things

Massive GC-like clusters are born with N~105 — 10° stars, leading to hundreds
to thousands of BH progenitors.

What happens to these BHs is still an evolving story.

e Past understanding: Mass segregation followed by rapid dynamical ejections

deplete GCs of BHs on ~ Gyr timescales (e.g., Spitzer 1969: Kulkarni et al. 1993:
Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000; Kalogera et al. 2004)

e BH can Maccarone et

e Modern




" Effects of Cluster Dynamics on
'BHs & Implications for aLIGO



Numerical Simulation Setup

Hénon-type Monte Carlo simulations using CMC
Coverage of a large parameter space

e N ~2x105to 2x106

Z ~ 0.0005, 0.001

e King profile with wp = 5
* |Initial fpb =510 10%
 Kroupa (2001) IMF between 0.08 to 150 M

BH formation kick distribution

* Momentum conserving, dependent on progenitor mass and £
(Belczynsky 2012)

Wind mass loss prescription



BH-BH Merger Properties as LIGO source
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BH-BH Merger Properties as LIGO Source

Masses: Assumptions Make a Difference
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Source Mass (M.,)

BH-BH Merger Properties as LIGO Source

Masses: Assumptions Make a Difference

] 1 ] | [ S ] |
40 35 3.0 25 20 15 1.0 05 0.0

Redshift (Z)

RCR16 (in prep.)



BH-BH Merger Properties as LIGO source

Chirp Mass, M.
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BH-BH Merger Properties as LIGO source

Chirp Mass, M.
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Cluster Source vs Field Source
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Uncertaln BH Phy5|cs &Thelr
Effects on Star Cluster Evolution



Numerical Simulation Setup

Hénon-type Monte Carlo simulations using CMC

Understand how uncertain BH physics affects the cluster’s evolution and
survival.

Same initial star cluster model, different assumptions of BH physics
N = 8e5, vy = 2 pc, King profile, wo =5, fp, = 5%, Kroupa IMF (0.1 — 100 M.)
 Formation kick distribution
* [IMF variations within published uncertainties
e Binarity and binary properties of high-mass stars

 Wind mass loss prescription



How Does the Story Depend onUncertain BH Physics?

Do BHs get large kicks similar to NSs?

Wide range in magnitudes from individual observed BH X-ray binaries (e.g., Brandt
et al. 1995; Nelemans et al. 1999; Willems et al. 2005; Gualandris et al. 2005; Dhawan et al. 2007;

Fragos et al. 2009; Wong et al. 2012, 2014).

Mass-dependent kicks?

YES, should depend on the details of SN physics including falloack mass
fraction (Fryer & Kalogera 2001; Belczynski et al. 2002)
MAYBE NOT (Repetio et al. 2012: Pejcha & Thompson 2015)



Effects of BHs on Cluster Evolution
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Effects of BHs on Cluster Evolution
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Effects of BHs on Cluster Evolution

M & Z dependent
(Belczynsky+02)
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Effects of BHs on Cluster Evolution
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How Does the Story Depend on

Do BHs get large kicks similar to NSs?

* Wide range in magnitudes from individual observed BH X-ray binaries (e.g., Brandt
et al. 1995: Nelemans et al. 1999; Willems et al. 2005; Gualandris et al. 2005; Dhawan et al. 2007;

Fragos et al. 2009; Wong et al. 2012, 2014).

Mass-dependent kicks?

* YES, should depend on the details of SN physics including fallback mass
fraction (Fryer & Kalogera 2001; Belczynski et al. 2002)

e MAYBE NOT (Repetto et al. 2012; Pejcha & Thompson 2015)

Standard IMFs have large uncertainties in the high-mass end
e 0=23+0.7form>1 M, where dn/dm = m-a(Kroupa 2001)
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Number of Retained BHs and GC Properties

___Total number of Retained BHs vs rc and pc
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Summary

® Overview of physical processes, & different numerical
approaches.

® Old GCs still can retain large numbers of BHs (unless they
are all ejected due to SN kicks).

® Cluster dynamics modify binary BH properties:
® |mplications for LIGO sources.

® Effects of uncertain physics that affects BHs and in turn can
dramatically changes host cluster’s evolution.

® Challenges in identifying GCs that may host large numbers
of BHs. Some possible solution (e.g., BSSs).
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